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Abstract. – We show that the well-known problem of the assignment of the spectrum σ(A+BKC), where
A (n×n), B (n×m), C (p×n) are fixed matrices, K (m× p) arbitrary, all with real entries, can be solved
in general if min(m, p) ≥ c

√
n . The numerical constant c , depending on various parities and on the nature

of the set to be assigned, takes values between 2
√

2 and 4
√

3. Previously known result (Kimura, 1975) was
m + p > n .
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Introduction.

Let A (n × n), B (n × m), C (p × n) be three fixed matrices, with real entries. We assume that
m ≤ n , p ≤ n , and that B and C have full rank.

Let K (m × p) be an arbitrary matrix, with real entries, at our disposal. The eigenvalue-assignment
problem, connected with output feedback, is : playing with the m× p entries in K , where can we put the
spectrum of the matrix A + BKC ? More precisely, given any set S of complex numbers {λ1, . . . , λn} such
that the set of conjugates S is equal to S , can we find K such that

σ(A + BKC) = S ?

This problem comes from Control Theory and, though it received considerable attention (see for instance
J-F Magni [4] and Champetier-Magni [2], and the references in these papers), only limited progresses have
been made. In [2] was proved that if m + p > n , the answer to the problem is “yes”, except for exceptional
situations of the poles.

Here we show that the entire spectrum assignment problem can be solved in general (that is : except
for exceptional positions of the λj ’s) as soon as min(m, p) ≥

√
8n + 33− 4 (when the set to be assigned is

real for more than one half), or min(m, p) ≥ 2
√

12n + 181 − 25 (in the other case). Minor variations due
to parity of n and min(m, p) appear ; the precise statements are given in theorems 3.1 and 4.1 below.

The paper is divided into two parts, which are of fairly different nature. In the first part, we show
that the assignment problem (which is of operator-theoretic nature) can be brought back, in an equivalent
manner (that is, with no loss of information) to a problem of intersection of linear subspaces : given subspaces
F1, . . . , Fn of RI n or CI n , with prescribed positions and dimensions, can we find one linear subspace H , with
given dimension, that intersects them all ? (by “intersects”, we mean of course non-trivially : H ∩Fj 6= {0} ,
for all j ). This equivalent formulation holds for all dispositions of the requested eigenvalues λ1, . . . , λn ,
except for finitely many.



In the second part, we use this characterization in terms of linear subspaces to show that the problem
admits a solution when m , p are specified as above ; the main technical tool is Borsuk’s Antipodal Theorem.

The present problem does not, by any means, carry any difficulty which approaches, by far, that of the
Invariant Subspace problem ; however it contains some technicalities which we will carefully handle. The
main one is due to the fact that the eigenvalues to be assigned may be of two different kinds : either real,
or complex non-real, pairwise conjugate.

Therefore, we advise the reader to go first through § 1, Part I, and § 1 and 2, Part II : they contain a
detailed treatment of the simplest case : the assignment of a set of real numbers. All key ideas are already
present there, and are much more transparent than in the general case. One also sees how the known case
m + p > n follows from our reduction, in a very simple manner.

We have not tried here to investigate the exceptional situations, except in Part I (where this is easy).
How to recognize them, how to handle them, clearly deserves further work.

Many key topics will also deserve further study : how the assignment depends on the data (robustness),
how behaves the operator norm of K , just to mention two of them.

We have not tried to find the best constants for small values of n . When n is small, the computations
made in Proposition 2.4 and Theorem 3.1 below can be made more accurate. As they are stated here,
our results take full value only when n is large : they say that the assignment is possible as soon as
min(m, p) ≥

√
8n , whereas the previously known result was min(m, p) > n/2. Strictly speaking, this is an

improvement only if
√

8n < n/2, that is n > 32, and some more work would be needed to improve our
estimates for small values of n also. But for large values of n , the improvement from c · n to c ·

√
n is not

only numerical ; it is also conceptual, because
√

n is obviously best possible : one cannot go beyond.

Finally, we have not tried to build any numerical procedure : the second part of our proof, relying on
Borsuk’s theorem, is non-constructive. Borsuk’s theorem is like the intermediate value theorem : it says
that several functions, under certain conditions, have a common zero ; it does not say where it is. The
same way, the intermediate value theorem will tell us that a polynomial with odd degree has a real zero,
and then some numerical procedure has to be designed in order to find that zero. But trying to develop the
numerical procedure before the problem has been analyzed at a theoretical level is just like moving a mass
without inventing the wheel : slow, painful and costly. Clearly also, the wheel is a theoretical device, and
further work is required before it can be used in practice. However, there will always be barbarians on horses
claiming that the wheel is not necessary, and that they are happy with what they have.

The first author would like to thank Patrick Lascaux (C.E.A., France) and J. F. Magni (ONERA, France)
for mentioning the problem, Kent State University and the University of Illinois at Urbana-Champaign for
their kind hospitality.

Part I

From Operator Theory to Intersection Properties of Linear Subspaces.

1. – A simple, generic, case.

We assume here that m = p ; F = RI p is the subspace of RI n spanned by the first p coordinates. B :
RI p → RI n is the canonical embedding (just denoted by J), and C : RI n → RI p is the orthogonal projection
(denoted by P). The λ1, . . . , λn to be assigned are real, pairwise distinct (λi 6= λj if i 6= j) and none of
them is in the spectrum of A , σ(A).

Let R(λ), λ /∈ σ(A), be the resolvent of A : R(λ) = (A − λI)−1 (see B. Beauzamy [1] for basic facts
about operator theory) ; let F1 = R(λ1)F, . . . , Fp = R(λp)F : these are p -dimensional subspaces of RI n .
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Let N = Ker P (a n− p dimensional subspace) and

Np+1 = (A− λp+1I)N, . . . , Nn = (A− λnI)N,

these are n− p dimensional subspaces.

For reasons which will be clear in the course of computations, we work with A−JKP rather than with
A + JKP .

Theorem 1.1. – The assignment of σ(A − JKP ) to {λ1, . . . , λn} , where λ1, . . . , λn are real, pairwise

distinct, and do not belong to σ(A) is possible, by means of an isomorphism K , if and only if we can

find a p-dimensional subspace H of RI n which intersects (non-trivially) F1, . . . , Fp , at independent points

x1, . . . , xp , and also intersects Np+1, . . . , Nn .

Proof : Let λ1, . . . , λn be a n -tuple of distinct real numbers, none of them being in σ(A). If σ(A−JKP ) =
{λ1, . . . , λn} , it means that we can find vectors x1, . . . , xn in RI n , all not zero, such that :

(A− JKP )xj = λjxj , j = 1, . . . , n, (1.1)

or :
(A− λjI)xj = JKPxj , j = 1, . . . , n. (1.2)

Let R(λj) = (A− λjI)−1 , and set yj = (A− λjI)xj , or xj = R(λj)yj , j = 1, . . . , n .

Equation (1.2) means that yj ∈ F (j = 1, . . . , n), and that in F :

yj = KPR(λj)yj , j = 1, . . . , n. (1.3)

The key idea of the method is as follows : if we choose p independent vectors y1, . . . , yp in F , the vectors
R(λj)yj (j = 1, . . . , p) will also be independent in general and so will be the PR(λj)yj , j = 1, . . . , p . Then
the p equations (1.3) for j = 1, . . . , p determine K completely, since K is an operator from F into F . The
n− p remaining equations (1.3) (for j = p + 1, . . . , n) will be treated as compatibility conditions, which we
now write.

Assume y1, . . . , yp have been chosen, so as to be a basis of F . Then each of the vectors yp+1, . . . , yn

admits a decomposition on this basis :

yj = α
(j)
1 y1 + · · ·+ α(j)

p yp , j = p + 1, . . . , n. (1.4)

Then :
KPR(λj)yj = α

(j)
1 KPR(λj)y1 + · · ·+ α(j)

p KPR(λj)yp , j = p + 1, . . . , n. (1.5)

So, the condition yj = KPR(λj)yj , j = p + 1, . . . , n is equivalent, using (1.4), to :

α
(j)
1 y1 + · · ·+ α(j)

p yp = α
(j)
1 KPR(λj)y1 + · · ·+ α(j)

p KPR(λj)yp , j = p + 1, . . . , n. (1.6)

Using the fact that yj = KPR(λj)yj for j = 1, . . . , p , we get, for j = p + 1, . . . , n ,

α
(j)
1 KPR(λ1)y1 + · · ·+ α(j)

p KPR(λp)yp

= α
(j)
1 KPR(λj)y1 + · · ·+ α(j)

p KPR(λj)yp . (1.7)
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So our compatibility conditions are equivalent to the n− p equations :

α
(j)
1 KP (R(λ1)−R(λj))y1 + · · ·+ α(j)

p KP (R(λp)−R(λj))yp = 0, (1.8)

for j = p + 1, . . . , n . Using the resolvent equation R(λi) − R(λj) = (λi − λj)R(λi)R(λj), and replacing
(λi − λj)α

(j)
i by α

(j)
i (which we may do, since we assumed λi − λj 6= 0), we get :

α
(j)
1 KPR(λj)R(λ1)y1 + · · ·+ α(j)

p KPR(λj)R(λp)yp = 0, j = p + 1, . . . , n. (1.9)

Since we will take for K an isomorphism, equations (1.9) are equivalent to :

PR(λj)(α
(j)
1 R(λ1)y1 + · · ·+ α(j)

p R(λp)yp) = 0, j = p + 1, . . . , n. (1.10)

Set H = span{R(λ1)y1, . . . , R(λp)yp} , N = Ker P (a n−p dimensional subspace), and for j = p+1, . . . , n :

Nj = Ker PR(λj) = {z, PR(λj)z = 0} = {z, R(λj)z ∈ N} = (A− λjI)N,

and Nj is also a n−p dimensional subspace, j = p+1, . . . , n . Then, since we requested R(λ1)y1, . . . , R(λp)yp

to be independent, equations (1.10) just mean that Nj intersects (non-trivially) H , for j = p + 1, . . . , n .

Let now Fj = R(λj)F , j = 1, . . . , p : this is a p -dimensional subspace. If we find a p -dimensional
subspace H which intersects Fj , j = 1, . . . , p , it means that there are points x1, . . . , xp in H , and points
y1, . . . , yp in F , such that xj = R(λj)yj , j = 1, . . . , p . If we request the x1, . . . , xp to be independent, H

is spanned by these points (since dim H = p), and the theorem is proved.

Of course, in general, when we find a p -dimensional subspace H which intersects F1, . . . , Fp , the
intersection points are independent and K is automatically an isomorphism.

However, the assumption “independent” is necessary, as D. Grayson pointed out to us : if n = 4 and
p = 2, it is always possible to find a 2-dimensional subspace of RI 4 which intersects four 2-dimensional
subspaces. But if we take A = 0, the general assignment is of course impossible : no matter what K is, we
will always have λ3 = λ4 = 0. In the present case, the two subspaces F1 and F2 coincide, and H must be
equal to them.

We also see that the case m + p > n (so p > n/2) has a simple solution. Take any vectors x1 in Np+1 ,
. . . , xn−p in Nn , and complete them in an arbitrary manner into p independent vectors x1 , . . . , xp . Take
H = span{x1, . . . , xp} . Then H intersects Np+1 , . . . , Nn , and also intersects automatically F1 , . . . , Fp

since their dimension is p > n/2.

2. – The general case.

We will first go through several simplifications, which we can make without loss of generality.

First, we may assume p ≤ m . Indeed, for any matrix M ,

σ(M∗) = conj{σ(M)} = {z, z ∈ σ(M)}.

Since here all matrices have real entries,

(A + BKC)∗ = t(A + BKC) = tA + tC tK tB.

Since the set we want to assign is invariant under complex conjugation, we may replace A + BKC by its
transpose, that is we may assume p ≤ m , which we do in the sequel.
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The second thing we observe is that B and C play very little role : only Ker C and Im B are
important :

Lemma 2.1. – The set of operators BKC , K arbitrary m × p matrix, is the set of all operators from

RI n/Ker C into ImB , with rank p .

Proof of Lemma 2.1 – Let RI n = E = Ker C ⊕ E1 , where dim E1 = p , dim Ker C = n− p . Then for any
K , BKC is an operator from E1 into Im B .

Conversely, let G be any p -dimensional subspace of Im B (recall that dim ImB = m ≥ p). Let
G1 = B−1(G), also p -dimensional.

Let M be any operator from E1 onto G ; since B is an isomorphism from G1 onto G , and since C is
an isomorphism from E1 onto C(E1), we can find K such that BKC = M , and the lemma is proved.

We might therefore decide that B is an injection and C is a projection, but this would require a
preliminary change of K . Since we want to stay with the original K , we will keep B and C as they are.
We let (as in § 1) N = Ker C (a n− p dimensional space) and F = Im B (a m−dimensional subspace).

So far, we have not met anything significantly different from the simplified case.

We now turn to the study of non-real eigenvalues.

Our self-conjugate set S of n complex numbers, to be assigned, will be numbered as follows (where
0 ≤ k ≤ n/2)

– first n− 2k real numbers, numbered λ1, . . . , λn−2k ,
– last, 2k non real numbers. We let λn−2k+1, . . . , λn−k be the ones with Imλ > 0, and we do not

number their conjugates.

This indexation may seem strange, since λn−k+1, . . . , λn do not exist explicitly ; it will however prove
efficient in the sequel. Introducing the λ

′
is in the indexation leads instead to redundant equations and must

be avoided.

If k = 0, all eigenvalues are real (this is the simplified case seen above) ; if n is even and k = n/2, none
is real.

We will say that the set S to be assigned is essentially real if k ≤ p/2 (thus n− 2k ≥ n− p). We will
say that it is essentially complex (one should of course say “essentially non-real”) if k > p/2.

This distinction will be used for clarity. We pick up p “principal” equations in the essentially real case,
p/2 in the essentially complex one, and write the others as compatibility equations. Distinguishing between
both cases will lead to a clearer presentation of the statements and of the proofs.

In the sequel, we restrict ourselves to the case p ≤ n/2 : on one hand, it is always possible to diminish
p by putting some zeros in K (and the smaller p is, the harder the assignment will be) ; on the other hand,
the case p > n/2 is already known.

If H is a real subspace of RI n , say H = span{z1, . . . , zp} for some basis {z1, . . . , zp} , the associated (or
underlying) complex space, denoted by HCI , is simply

HCI =

{
n∑
1

αjzj ; α1, . . . , αn ∈ CI

}
.

This is independent of the basis, and HCI = HCI .
We may now state the general intersection theorem.
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Theorem 2.2. – Let n , p , m , with p ≤ m and p ≤ n/2 , and let S be a self-conjugate set of n complex

numbers, pairwise distinct, none of them being in σ(A) .

1) If the set S is essentially real, the assignment problem is equivalent to the existence of a subspace H of

RI n , satisfying simultaneously :

a) H intersects the p real subspaces R(λ1)F, . . . , R(λp)F (all of dimension m), and is spanned by these

intersections,

b) H intersects the n − 2k − p real subspaces (A − λp+1I)N, . . . , (A − λn−2kI)N (all of dimension

n− p),

c) the associated complex space HCI intersects (A − λn−2k+1I)N, . . . , (A − λn−kI)N (all of complex

dimension n− p).

2) If the set S is essentially complex, let µ = p/2 if p is even, (p+1)/2 if p is odd. The assignment problem

is equivalent to the existence of a µ-dimensional space H of CI n , satisfying simultaneously :

a) H intersects the µ complex subspaces R(λn−k−µ+1)FCI , . . . , R(λn−k)FCI (all of dimension m), and

is spanned by these intersections,

b) Re(H) (the real parts of vectors in H ) intersects the real subspaces (A−λ1I)N ,. . . , (A−λn−2kI)N
(all of dimension n− p),

c) H ⊕H intersects the complex subspaces (A− λn−2k+1I)N , . . . , (A− λn−k−µI)N

(all of dimension n− p).
We now turn to the proof of the theorem. As before, we prefer to work with A−BKC . To say that

σ(A−BKC) = {λ1, . . . , λn−2k, λn−2k+1, . . . , λn−k, λn−2k+1, . . . , λn−k}

means that we can find vectors z1, . . . , zn−2k ∈ RI n , zn−2k+1, . . . , zn−k ∈ CI n , all non-zero, such that

(A−BKC)zj = λjzj , j = 1, . . . , n− k. (2.1)

Of course, for λj (j = n− 2k + 1, . . . , n− k), the eigenvector is automatically zj , and these equations may
be omitted.

Equations (2.1) can be written :

(A− λjI)zj = BKCzj , j = 1, . . . , n− k. (2.2)

Set yj = (A− λjI)zj , or zj = R(λj)yj . Then yj ∈ RI n for j ≤ n− 2k , yj ∈ CI n , j ≥ n− 2k + 1, and (2.2)
becomes :

yj = BKC R(λj)yj , j = 1, . . . , n, (2.3)

with λn−k+1 = λn−2k+1, . . . , λn = λn−k , yn−k+1 = yn−2k+1, . . . , yn = yn−k .

The next lemma says there is no need to worry about the matrix K being real : this will be automatic.

Lemma 2.3. – If the matrix K satisfies the n equations (2.3), and if the rank of the vectors yj is at least

p , then K is real.

Proof of lemma 2.3 – The matrix K : CI p → CI m is totally determined if we know the images of p

independent vectors, that is K is uniquely determined by (2.3) if we assume the rank of the yj ’s to be at
least p . But K satisfies the same equations, and therefore K = K .

We now distinguish between the essentially real and the essentially complex cases.
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A. – The essentially real case.

Since n− 2k ≥ n− p ≥ p , at least p of the equations (2.3) are real ones. We take the first p equations
(2.3) as “principal” ones, and write the others as compatibility conditions.

We take yj , j > p , under the form :

yj = α
(j)
1 + · · ·+ α(j)

p yp , (2.4)

with α
(j)
1 , . . . , α

(j)
p real if j = p + 1, . . . , n − 2k , and α

(j)
1 , . . . , α

(j)
p complex if j > n − 2k . Of course, for

each j , at least one of the α
(j)
i (i = 1, . . . , p) must be non-zero.

Exactly the same computations as in § 1 lead to :

BKC R(λj)
(
α

(j)
1 R(λ1)y1 + · · ·+ α(j)

p R(λp)yp

)
= 0 , j > p. (2.5)

Since B is an isomorphism into its image, and since we will take for K an isomophism, equations (2.5)
become :

C R(λj)
(
α

(j)
1 R(λ1)y1 + · · ·+ α(j)

p R(λp)yp

)
= 0 , j > p. (2.6)

We observe that (2.6) is stronger than (2.5), even if K is not an isomorphism.

Let’s now prove Theorem 2.1, 1).

Assume we have found a p -dimensional subspace H of RI n , satisfiying a), b) and c). Since H intersects
R(λ1)F, . . . , R(λp)F , there are points zj in H , points yj in F (j = 1, . . . , p), such that

zj = R(λj)yj , j = 1, . . . , p, (2.7)

and H = span{z1, . . . , zp} .
Since H intersects the n− 2k − p real subspaces (A− λp+1I)N, . . . , (A− λn−2kI)N , we can find real

linear combinations α
(j)
1 z1 + · · ·+ α

(j)
p zp (α(j)

1 ,. . . , α
(j)
p real) with

α
(j)
1 z1 + · · ·+ α(j)

p zp ∈ (A− λjI)N, j = p + 1, . . . , n− 2k,

which means (2.6) for j = p + 1, . . . , n− 2k .

Since HCI intersects the complex subspaces (A−λn−2k+1I)N, . . . , (A−λn−kI)N , we can find complex
linear combinations α

(j)
1 z1 + · · ·+ α

(j)
p zp (α(j)

1 , . . . , α
(j)
p complex) with

α
(j)
1 z1 + · · ·+ α(j)

p zp ∈ (A− λjI)N, j = n− 2k + 1, . . . , n− k,

and this means (2.6) for j = n− 2k + 1, . . . , n− k .

Conversely, assume that the assignment can be realized. It means that y1, . . . , yp can be found, and,
for each j > p , a collection (α(j)

1 , . . . , α
(j)
p ) such that (2.6) holds. Let H = span{R(λ1)y1, . . . , R(λ1)yp} .

Obviously, a) is satisfied, and (2.6) implies b) and c).
So Theorem 2.2 is proved in this case.
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B. – The essentially complex case.

We now have a large supply of complex equations (2.3) : the number of such equations, with Imλ > 0,
is k > p/2.

If µ = p/2 (p even) or (p + 1)/2 (p odd), at least µ such equations can be found. They are the last µ

equations in the list, and correspond to the labels λn−k−µ+1, . . . , λn−k , with corresponding yj ’s.
In order to simplify the notation, we let

λ′1 = λn−k−µ+1, . . . , λ
′
µ = λn−k ,

y′1 = yn−k−µ+1, . . . , y
′
µ = yn−k.

The other yj ’s (j ≤ n− k − µ) will be taken under the form :

yj = α
(j)
1 y′1 + β

(j)
1 y′1 + · · ·+ α(j)

µ y′µ + β(j)
µ y′µ . (2.8)

If j ≤ n− 2k , yj is real, and we take moreover : β
(j)
1 = α

(j)
1 , . . . , β

(j)
µ = α

(j)
µ .

Exactly the same computations as in § 1 now give, for j ≤ n− k − µ :

CR(λj)
(
α

(j)
1 R(λ′1)y

′
1 + β

(j)
1 R(λ

′
1)y

′
1 + · · ·+ α(j)

µ R(λ′µ)y′µ + β(j)
µ R(λ

′
µ)y′µ

)
= 0. (2.9)

If j ≤ n− 2k , this becomes simply :

CR(λj)

(
Re

n∑
i=1

α
(j)
i R(λ′i)y

′
i

)
= 0. (2.10)

Assume now we have found a subspace H of CI n satisfying a), b), c). Since H intersects the subspaces
R(λ′1)FCI , . . . , R(λ′µ)FCI , there exist points z′1, . . . , z

′
µ in H , y′1, . . . , y

′
µ in FCI (all non-zero) such that

z′j = R(λ′j)y
′
j , j = 1, . . . , µ, (2.11)

and H = spanCI {z
′
1, . . . , z

′
µ} .

Equations (2.10) mean that Re(H) intersects (A−λjI)N , j = 1, . . . , n−2k , and equations (2.9) mean
that H ⊕H intersects (A− λjI)N , j = n− 2k + 1, . . . , n− k − µ . So the assignment can be realized. The
converse is obvious, and the theorem is proved.

Part II.– Intersecting linear subspaces.

We have seen in the first part (Theorem 2.2) that the assignment of {λ1, . . . , λn} (either real or pair-wise
conjugate), not belonging to σ(A), was equivalent to an intersection problem for linear subspaces. We now
describe the required intersection properties by means of linear equations.

1. Representing linear subspaces by means of linear operators.

Let F be a m -dimensional subspace of RI n . If we write any z ∈ RI n as z = (z′, z′′), where z′ ∈ RI m ,
z′′ ∈ RI n−m , we may describe F as :

F = {z ∈ RI n ; z′′ = Tz′}, (1.1)

for some operator T : RI m → RI n−m .
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The representation is not true for all subspaces of RI n : only for those which have no linear dependence
among the first m coordinates ; such subspaces will be called “in general position”. But this is not a
restriction, as we will see later.

Similarly, if N is a n− p dimensional subspace of RI n , there is an operator V : RI n−p → RI p such that

N = {z ∈ RI n ; z′ = V z′′}, (1.2)

when N is in general position (that is, this time, when there is no linear dependence between the last n− p

coordinates).

Let’s first observe that to be in general position is not a restriction : one should simply choose correctly
the basis of RI n .

Lemma 1.1. – Given p subspaces F1, . . . , Fp of the space RI n with dimension m < n and n− p subspaces

Np+1, . . . , Nn of RI n , with dimension n− p , one can always find a basis of RI n such that all these subspaces

are in general position.

Proof of Lemma 1.1. – First, take any non-zero vectors f
(1)
1 , . . . , f

(1)
p in F1, . . . , Fp respectively, and any

non-zero vectors g
(1)
p+1, . . . , g

(1)
n in Np+1, . . . , Nn respectively. Let H1 be a hyperplane which contains none

of these vectors, and let e1⊥H1 . The vector e1 will be the first vector of our basis, and all further vectors
will be chosen in H1 . It is clear that the f

(1)
j ’s and the g

(1)
j ’s have a non-zero composent on e1 . Now each

Fj ∩H1 is exactly m− 1 dimensional, and each Nj ∩H1 is exactly n− p− 1 dimensional.

Take now any non-zero vectors f
(2)
1 , . . . , f

(2)
p in F1 ∩H1 , . . . , Fp ∩H1 respectively and any non-zero

vectors g
(2)
p+1, . . . , g

(2)
n in Np+1 ∩ H1 ,. . . , Nn ∩ H1 ; let H2 be a hyperplane of H1 , not containing any of

the f
(2)
j ’s or any of the g

(2)
j ’s, and let e2 ∈ H1 , e2⊥H2 , and so on. The constructed basis has the required

property.

The above construction of the basis (ej)j=1,...,n is not critical and, in fact, if one chooses at random
vectors e1 ,. . . , en in the unit ball of RI n , they will (with probability 1) form a basis with respect to which
the fixed subspaces F1, . . . , Fp , Np+1, . . . , Nn will be in general position.

What we said for subspaces of RI n applies also, obviously, to subspaces of CI n , without any modification.

In the sequel, we assume that the basis of RI n or CI n has been properly chosen (with respect to the
required assignment) and that the subspaces we meet are in general position.

As we already did in the First Part, we study in detail the case of the assignment of n real numbers.
This is of course a special case, but the techniques will be more transparent. We will then turn to the general
cases : the essentially real case and the essentially complex one.

2. A special case : the assignment of n real numbers.

We assume as before p ≤ m ≤ n , p ≤ n/2.

Theorem 2.1. – The assignment of λ1, . . . , λn , all real, distinct and not in σ(A) is possible in general if

p ≥
√

8n + 33− 5, when n− p is odd,

p ≥
√

8n + 33− 4, when n− p is even.

Proof of Theorem 2.1. – Since our estimates use only min(p, m), we may assume m = p , which we do for
simplicity. We now divide the proof into sections, which will be used later.
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1.a. – Notations.

Let now Fj = R(λj)F (j = 1, . . . , p) be the p subspaces of dimension p , and Nj = (A − λjI)N
(j = p + 1, . . . , n) be the n − p subspaces of dimension n − p defined in Part I, Theorem 1.1, or Theorem
2.2 (in this case, k = 0 : all real).

According to § 1, we write
Fj = {z ∈ RI n ; z′′ = Tjz

′}, (2.a.1)

where each Tj is a linear operator RI p → RI n−p , j = 1, . . . , p .

Similarly, we write
Nj = {z ∈ RI n ; z′ = Vjz

′′}, (2.a.2)

where each Vj is a linear operator RI n−p → RI p , j = p + 1, . . . , n .

2.b. – From linear operators to linear equations.

We want to find a subspace H , intersecting F1, . . . , Fp , spanned by these intersections (thus H will be
p -dimensional) and also intersecting Np+1, . . . , Nn .

The subspace H will be determined by p independent vectors u1, . . . , up in RI n . The fact that H

intersects F1 non-trivially means that there is a non-zero linear combination a1,1u1 + · · ·+a1,pup , belonging
to F1 , that is, by (2.a.1), satisfying

T1(a1,1u
′
1 + · · ·+ a1,pu

′
p) = a1,1u

′′
1 + · · ·+ a1,pu

′′
p ,

and since the uj ’s are independent, in order to ensure that this combination is non-zero, all we need is that
one of the a1,j (j = 1, . . . , p) should be non-zero.

We argue the same way with F2, . . . , Fp , Np+1, . . . , Nn and we obtain :

Proposition 2.2. – The assignment of λ1, . . . , λn , real, distinct and not in σ(A) can be realized if and

only if there are independent vectors u1, . . . , up in RI n , such that, if u = (u′, u′′) , u′ ∈ RI p , u′′ ∈ RI n−p , the

following two sets of equations are simultaneously satisfied :
T1(a1,1u

′
1 + · · ·+ a1,pu

′
p) = a1,1u

′′
1 + · · ·+ a1,pu

′′
p

...

Tp(ap,1u
′
1 + · · ·+ ap,pu

′
p) = ap,1u

′′
1 + · · ·+ ap,pu

′′
p

(2.b.1)


ap+1,1u

′
1 + · · ·+ ap+1,pu

′
p = Vp+1(ap+1,1u

′′
1 + · · ·+ ap+1,pu

′′
p)

...

an,1u
′
1 + · · ·+ an,pu

′
p = Vn(an,1u

′′
1 + · · ·+ an,pu

′′
p)

(2.b.2)

where in each of these n equations at least one of the ai,j ’s must be non-zero.

2.c. – From equations in RI n to equations in RI n−p .

In all the above equations, appear both u′j and u′′j . We use the last p equations of (2.b.2) in order
to compute (in a trivial manner) each u′j from the corresponding u′′j . In the last equation (2.b.2), we set
an,p = 1, all other an,i = 0, and get

u′p = Vn u′′p . (2.c.1)
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Similarly, in the previous one, we set an−1,p−1 = 1, all other 0, and get

u′p−1 = Vn−1 u′′p−1 ,

and proceed the same way until

u′1 = Vn−p+1 u′′1 .

Substituting the u′j into the p equations (2.b.1) and the remaining n− 2p equations (2.b.2) gives :


a1,1(T1Vn−p+1 − I)u′′1 + · · ·+ a1,p(T1Vn − I)u′′p = 0

...

ap,1(TpVn−p+1 − I)u′′1 + · · ·+ ap,p(TpVn − I)u′′p = 0

(2.c.2)

and 
ap+1,1(Vn−p+1 − Vp+1)u′′1 + · · ·+ ap+1,p(Vn − Vp+1)u′′p = 0

...

an−p,1(Vn−p+1 − Vn−p)u′′1 + · · ·+ an−p,p(Vn − Vn−p)u′′p = 0

(2.c.3)

Now, in order to simplify our notation, we set xj = u′′j ∈ RI p , j = 1, . . . , p , and Wi,j = Vn−p+j − Vi ,
i = p + 1, . . . , n− p , j = 1, . . . , p .

So Wi,j : RI n−p → RI p for each i, j . Equations (2.c.3) become :


ap+1,1Wp+1,1x1 + · · ·+ ap+1,pWp+1,pxp = 0

...

an−p,1Wn−p,1x1 + · · ·+ an−p,pWn−p,pxp = 0

(2.c.4)

We now turn to the study of equations (2.c.4). Just one xj will be enough to take care of them.

2.d. – Killing many animals with a single bullet.

Proposition 2.3. – For every choice of x1, . . . , xp−1 6= 0 , there exists a non-zero xp and a choice of ai,j

(i = p + 1, . . . , n− p, j = 1, . . . , p) , with a least one ai,j 6= 0 for each i , such that all equations (2.c.4) are

simultaneously satisfied.

Proof of Proposition 2.3. – Fix x1, . . . , xp−1 6= 0. Consider the application f , from the unit ball of RI n−p

into RI n−2p :
f(x) =

(
det(Wp+1,1x1, . . . ,Wp+1,p−1xp−1,Wp+1,px),

...

det(Wn−p,1x1, . . . ,Wn−p,p−1xp−1,Wn−p,px)
)
.

It satisfies f(−x) = −f(x) and so by Borsuk’s antipodal theorem, there is a x , ‖x‖ = 1, such that f(0) = 0.

This implies that all determinants are zero, and proves the proposition.
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Remark. – There is a more direct way to handle the equations (2.b.2), which does not require the substi-
tutions (2.c.1) and leaves room for more freedom in the choice of the u′j . Indeed, instead of f(x) defined
above, consider :

g(u) =
(
det(u′1 − Vp+1u

′′
1 , . . . , u′p−1 − Vp+1u

′′
p−1, u

′ − Vp+1u
′′),

...

det(u′1 − Vnu′′1 , . . . , u′p−1 − Vnu′′p−1, u
′ − Vnu′′)

)
,

where u ∈ RI n , ‖u‖ = 1. This is an odd function of u , with values in RI n−p , and Borsuk applies.

This method leads to the same estimates, but does not require any link between u′j and u′′j , j =
1, . . . , p − 1. So we may decide to fix arbitrary operators S1, . . . , Sp−1 : RI n−p → RI p , and set u′j = Sju

′′
j ,

j = 1, . . . , p−1. This method will be used in § 3 and 4 below, and may also prove useful for an investigation
of the exceptional cases.

We now turn to equations (2.c.2), which are much harder to solve, because they are in RI n−p and not
in RI p .

2.e. – Solving equations in RI n−p .

In equations (2.c.2), we take a1,p = · · · = ap,p = 0, so xp will not appear in them. We also introduce
the notation

Ui,j = TiVn−p+j − I, i = 1, . . . , p− 1, j = 1, . . . , p.

So equations (2.c.2) become : 
a1,1U1,1x1 + · · ·+ a1,p−1U1,p−1xp−1 = 0

...

ap,1Up,1x1 + · · ·+ ap,p−1Up,p−1xp−1 = 0,

(2.e.1)

where Ui,j : RI n−p → RI n−p , and x1, . . . , xp−1 ∈ RI n−p .

The idea of the solution is as follows : from the last equations (2.e.1) one computes the last variables
xj in terms of the first ones. Then, one substitutes into the first equations, in such a way that one gets
equations with exactly n− p terms, in which the variables xj will be repeated but the ai,j are independent
from one equation to the next. One then applies Borsuk’s theorem to solve these “long” equations ; the
remaining “short” ones are solved in a trivial manner. Unfortunately, since Borsuk’s theorem requires the
function to be odd, we will need to distinguish between the case n − p odd and the case n − p even, with
minor differences.

Proposition 2.4. – If p ≥
√

8n + 33 − 5 (case n − p odd) or p ≥
√

8n + 33 − 4 (case n − p even), the

equations (2.e.1) admit a solution in general : there exist independent xi ’s and (ai,j) (one at least non-zero

for each i) satisfying (2.e.1).

Proof of Proposition 2.4. – Let l , h be two integers, such that l.h < p , to be specified later. Let q = lh .
Consider the last q equations (2.e.1). From the last equation, compute xp−1 in terms of x1, . . . , xp−q−1

in a trivial manner :

Up,p−1xp−1 = −(ap,1Up,1x1 + · · ·+ ap,p−q−1Up,p−q−1xp−q−1). (2.e.2)

We claim that Up,p−1 is invertible in general. Indeed, Up,p−1 = TpVn−1 − I . If some x 6= 0, x ∈ RI n−p ,
satisfied TpVn−1x = x , then set u′′ = x , u′ = Vn−1x ∈ RI p . Then Tpu

′ = u′′ and Vn−1u
′′ = u′ , which means

that the vector u = (u′, u′′) ∈ RI n, u 6= 0, would be both in Fp and in Nn−1 : these two vector spaces would
already intersect.
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Similarly, we compute xp−2 :

Up−1,p−2xp−2 = −(ap−1,1Up−1,1x1 + · · ·+ ap−1,p−q−1Up−1,p−q−1xp−q−1),

and so on, until

Up−q,p−q−1xp−q = −(ap−q,1Up−q,1x1 + · · ·+ ap−q,p−q−1Up−1,p−q−1xp−q−1).

We observe that all these equations carry independent ai,j ’s. Let’s now arrange the last q variables
xp−q, . . . , xp−1 into l blocks of length h :

L1 = (xp−q, . . . , xp−q−h+1), . . . , Ll = (xp−h, . . . , xp−1). (2.e.3)

Let also L0 be the block of the first variables :

L0 = (x1, . . . , xp−q−1).

Now, the substitution process goes as follows :

– in the first equation (2.e.1), do the following
* do not touch variables in L0 ,
* kill all variables except in L0 and Ll (that is, take the corresponding ai,j = 0)
* substitute all variables in Ll , using (2.e.2).
Each substitution replaces one variable by p−q−1 variables, so the new equation has (h+1)(p−q−1)

variables xj . These variables are not distinct : each of them is repeated h + 1 times, but all the a ’s are
independent, and none of them will appear in any latter equation.
– in the second equation (2.e.1), do the following :

* do not touch variables in L0 ,
* kill all variables except in L0 and Ll−1 ,
* substitute all variables in Ll−1 , using (2.e.2).

– repeat this process l times.

This way, we get l “long” equations, involving (h + 1)(p− q − 1) terms with independent a ’s.

After we have used q last equations to compute the last xj ’s from the first, and performed substitutions
in the l first equations, the number of “middle” equations left is of course p− q − l .

We want to keep x1 for further use, in order to solve the long equations. The middle ones will be solved
in a trivial manner, just reducing to two variables. The first one becomes :

al+1,1 Ul+1,1 x1 + al+1,2 Ul+1,2 x2 = 0,

and it can be solved in terms of x2 : if Ul+1,2 is invertible, take al+1,1 = al+1,2 = 1, if not, take x2 in its
kernel and al+1,1 = 0, al+1,2 = 1.

This trivial solving process for the middle equations requires one variable (after x1 ) for each, that is,
we need p− q − l variables after x1 . Since the number of variables at our disposal is p− q − 2 (after x1 ),
we find the condition

p− q − 2 ≥ p− q − l,

or
l ≥ 2, (cond 1)
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in order to solve the middle equations. The solution of these middle equations is in general expressed in
linear terms : 

x2 = A2x1

x3 = A3x1

...

xp−q−1 = Ap−q−1x1

(2.e.4)

We substitute all these variables in the l first long equations, and, if any free variable remains, we take it
also equal to x1 .

Now, we require that the length of the long equations is at least n− p , that is :

(h + 1)(p− q − 1) ≥ n− p. (cond 2)

If this length exceeds n− p , we kill the corresponding terms, by taking all the corresponding a ’s to be zero.
This way, we obtain a set of equations (with x = x1 )

t1,1A1,1x + · · ·+ t1,n−pA1,n−px = 0
...

tl,1Al,1x + · · ·+ tl,n−pAl,n−px = 0,

(2.e.5)

where the Ai,j are given operators RI n−p → RI n−p , x ∈ RI n−p is at our disposal, and so are the real scalars
ti,j . At least one of each ti,j should be non-zero in each line.

We consider the application ϕ , from the unit ball of RI n−p into RI l :

ϕ(x) = (det(A1,1x, . . . , A1,n−px), . . . , det(Al,1x, . . . , Al,n−px)) .

When n− p is odd, this is an odd function, and so by Borsuk’s theorem there is an x , ‖x‖ = 1, such that
ϕ(x) = 0. This solves all equations (2.e.5), provided conditions (cond 1) and (cond 2) are satisfied, in the
case n− p odd.

If n− p is even, then we just drop one unit for p from the original problem : we fix arbitrarily the last
row and the last column in K , that is we consider it as a (p− 1)× (p− 1) matrix.

One can also decide, in order to handle this case, to keep one free variable, say x1 : xp−q, . . . , xp−1 are
expressed in terms of x2, . . . , xp−q−1 only, and x1 is kept to apply Borsuk. This leads to weaker estimates.

We still have to study conditions (cond 1) and (cond 2). But before we do this, let’s understand the
structure of the proof.

The points x2, . . . , xp−q−1 are determined from x1 by (2.e.4). The variable x = x1 itself is solution of
(several) equations of the type :

a1U1x + a2U2A2x + · · ·+ ap−q−1Up−q−1Ap−q−1x + ap−qUp−qx + ap−q+1Up−q+1A2x + · · · = 0

(the U ’s are different, the A ’s repeat themselves).

Since the U ’s are arbitrary operators, the points x1 , A2x1 ,. . . , Ap−q−1x1 will be linearly independent
in general.
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Now xp−q ,. . . , xp−1 are determined from x1, . . . , xp−q−1 by other independent operators, so the points
x1 , . . . , xp−1 will be linearly independent in general (we are in RI n−p ). Finally, the point xp is determined
from x1 , . . . , xp−1 by a (complicated) equation involving other operators, so it will be linearly independent
of the previous ones in general.

We now turn to numerical computations.

f. Numerical computations.

We want to find p such that l , h exist, satisfying l ≥ 2

(h + 1)(p− lh− 1) ≥ n− p

The last condition gives
ph− h + 2p− 1− n

h(h + 1)
≥ l.

which is equivalent to
−2h2 + (p− 3)h + 2p− 1− n ≥ 0. (2.f.1)

The maximum is reached for h = (p− 3)/4, which is not necessarily an integer. Thus we write

p = 4r + ρ, ρ = 0, 1, 2, 3,

and take h = r . Thus (2.f.1) becomes :

2r2 + rρ + 5r + 2ρ− 1− n ≥ 0,

which is satisfied as soon as :
r ≥ −ρ

4
− 5

4
+

1
4

√
ρ2 − 6ρ + 33 + 8n ,

or
p ≥ −5 +

√
ρ2 − 6ρ + 33 + 8n ,

and this condition is satisfied, no matter what value ρ takes (ρ = 0, 1, 2, 3), if

p ≥
√

8n + 33− 5 . (2.f.2)

g. A numerical example.

We explain on an example how one passes from equations (2.e.1) to the long equations (2.e.5).

Take n = 101, p =
√

8n + 33− 5 =
√

841− 5 = 24, n− p = 77 is odd.

Thus there are p = 24 equations (2.e.1), with 23 variables.
Divide p by 4 : 24 = 4× 6, so r = 6, and h = 6, l = 2, q = h.l = 12.
Consider the last 12 equations. Here p− q − 1 = 24− 12− 1 = 11.
Using the last equation, compute x23 in terms of x1, . . . , x11 ; using the 23rd equation, compute x22

in terms of x1, . . . , x11 , and so on ; using the 13th equation, compute x12 in terms of x1, . . . , x11 .
Here L0 = (x1, . . . , x11), L1 = (x12, . . . , x17), L2 = (x18, . . . , x23).
In order to build the first long equation, kill L2 , substitute x12, . . . , x17 using x1 ,. . . , x11 : this gives

11 + 6× 11 = 77 variables.

In order to build the second long equation, kill L1 , substitute x18, . . . , x23 using x1, . . . , x11 : this again
gives 77 variables.

We now turn to the general assignment problem : not all numbers are real. We use the distinction
“essentially real case”, “essentially complex case” established in Part I.
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3.– The essentially real case.

Theorem 3.1. – If p ≥
√

8n + 33 − 5 (n − p odd) or p ≥
√

8n + 33 − 4 (n − p even), the assignment of

an essentially real set {λ1, . . . , λn} is possible in general.

Proof of Theorem 3.1. – Here our subspaces Fj = R(λj)F (j = 1, . . . , p) have the same meaning as before ;
they are subspaces of RI n , and are described by (2.a.1).

The Nj = (A − λjI)N are real for j = p + 1, . . . , n − 2k and are described by a real operator Vj :
RI n−p → RI p , by (2.a.2). For j = n− 2k + 1, . . . , n− k , they are complex and Vj : CI n−p → CI p .

The vectors uj are in RI n , j = 1, . . . , p .

Equations (2.b.1) (2.b.2) now become :
T1(a1,1u

′
1 + · · ·+ a1,pu

′
p) = a1,1u

′′
1 + · · ·+ a1,pu

′′
p

...

Tp(ap,1u
′
1 + · · ·+ ap,pu

′
p) = ap,1u

′′
1 + · · ·+ ap,pu

′′
p

(3.1)


ap+1,1u

′
1 + · · ·+ ap+1,pu

′
p = Vp+1(ap+1,1u

′′
1 + · · ·+ ap+1,pu

′′
p)

...

an−2k,1u
′
1 + · · ·+ an−2k,pu

′
p = Vn−2k+1(an−2k,1u

′′
1 + · · ·+ an−2k,pu

′′
p)

(3.2)


an−2k+1,1u

′
1 + · · ·+ an−2k+1,pu

′
p = Vn−2k+1(an−2k+1,1u

′′
1 + · · ·+ an−2k+1,pu

′′
p)

...

an−k,1u
′
1 + · · ·+ an−k,pu

′
p = Vn−k(an−k,1u

′′
1 + · · ·+ an−k,pu

′′
p)

(3.3)

If p ≤ n/3 (the interesting case !), n− 2k− p ≥ p , and equations (3.2) can be used to compute u′1 in terms
of u′′1 , . . . , u′p in terms of u′′p , as we did in (2.c.1). But in all cases, we can argue as follows :

Proposition 3.2. – For any choices of u1, . . . , up−1 , all non-zero, there is a choice of up , non-zero, and for

each i = p + 1 , a choice of scalars ai,1, . . . , ai,p (real if i ≤ n − 2k , complex if i > n − 2k ), at least one

non-zero in each list, such that equations (3.2) and (3.3) are simultaneously satisfied.

Proof. – We consider the function ϕ , defined on the unit sphere of RI n , with values in RI n−p :

ϕ(V ) =
(
det(u′1 − Vp+1u

′′
1 , . . . , u′p−1 − Vp+1u

′′
p−1, v

′ − Vp+1v
′′),

...

det(u′1 − Vn−2ku′′1 , . . . , u′p−1 − Vn−2ku′′p−1, v
′ − Vn−2kv′′),

Re det(u′1 − Vn−2k+1u
′′
1 , . . . , u′p−1 − Vn−2k+1u

′′
p−1, v

′ − Vn−2k+1v
′′),

Im det(u′1 − Vn−2k+1u
′′
1 , . . . , u′p−1 − Vn−2k+1u

′′
p−1, v

′ − Vn−2k+1v
′′),

...

Re det(u′1 − Vn−ku′′1 , . . . , u′p−1 − Vn−ku′′p−1, v
′ − Vn−kv′′),

Im det(u′1 − Vn−ku′′1 , . . . , u′p−1 − Vn−ku′′p−1, v
′ − Vn−kv′′)

)
,

where v = (v′, v′′), v′ ∈ RI p , v′′ ∈ RI n−p .

This is an odd function of v ; Borsuk’s Theorem applies and solves all equations (3.2), (3.3) at the same
time. The v obtained is non-zero.
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Now, we are left with equations (3.1), in which we take all ai,p = 0, i = 1, . . . , p , so as to kill up .
We now decide to fix arbitrary operators S1, . . . , Sp−1 , RI n−p → RI p , such that all TiSj−I are invertible

and independent operators. We then set :

u′1 = S1u
′′
1 , . . . , u′p−1 = Sp−1u

′′
p−1. (3.4)

This way, equations (3.1) become, with Ui,j = TiSj − I and xj = u′′j :
a1,1U1,1x1 + · · ·+ a1,p−1U1,p−1xp−1 = 0

...

ap,1Up,1x1 + · · ·+ ap,p−1Up,p−1xp−1 = 0

(3.5)

which is (2.e.1) and is solved in the same manner.

4. The essentially complex case.

Theorem 4.1. – The assignment of an essentially complex set {λ1, . . . , λn} is possible in general as soon

as :
p ≥ 2

√
8n + 89− 18, n odd, p even,

p ≥ 2
√

8n + 89− 17, n odd, p odd,

p ≥ 2
√

12n + 181− 26, n even, p even,

p ≥ 2
√

12n + 181− 25, n even, p odd.

Proof of Theorem 4.1. – Decreasing p by one unit if necessary, we assume p to be even and set µ = p/2.

Now, we have only µ Fj ’s, and they are complex. We try to reproduce the notation of the real case,
by putting :

F1 = R(λn−k−µ+1)F, . . . , Fµ = R(λn−k)F. (4.1)

These subspaces are p -dimensional in CI n .

By (2.a.1), we write them as :

Fj = {z ∈ CI n ; z′′ = Tjz
′}, j = 1, . . . , µ, (4.2)

where each Tj : CI p → CI n−p .

The real subspaces (A− λ1I)N, . . . , (A− λn−2kI)N , all of dimension n− p , are written :

Nµ+1 = (A− λ1I)N, . . . , Nµ+n−2k = (A− λn−2kI)N, (4.3)

with
Nj = {z ∈ RI n ; z′ = Vjz

′′}, j = µ + 1, . . . , µ + n− 2k, (4.4)

and Vj : RI n−p → RI p .

(Note that these Nj ’s will not exist at all if n = 2k : case when the assignment is entirely complex.)
Finally, the complex subspaces (A− λn−2k+1I)N, . . . , (A− λn−k−µI)N are written as

Nµ+n−2k+1 = (A− λn−2k+1I)N, . . . , Nn−k = (A− λn−k−µI)N, (4.5)

and
Nj = {z ∈ CI n ; z′ = Vjz

′′}, j = µ + n− 2k + 1, . . . , n− k, (4.6)

and Vj : CI n−p → CI p .
In order to simplify the notation, we set ν = µ + n− 2k .
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The complex subspace H will be determined by µ independent vectors u1, . . . , uµ in CI n . The fact
that H intersects F1, . . . , Fµ can be expressed by :


T1(a1,1u

′
1 + · · ·+ a1,µu′µ) = a1,1u

′′
1 + · · ·+ a1,µu′′µ

...

Tµ(aµ,1u
′
1 + · · ·+ aµ,µu′µ) = aµ,1u

′′
1 + · · ·+ aµ,µu′′µ

(4.7)

where the ai,j are real, one at least on each line being non-zero.

The fact that ReH intersects Nµ+1, . . . , Nν is expressed by :



aµ+1,1(u′1 + u′1) + · · ·+ aµ+1,µ(u′µ + u′µ) =

= Vµ+1

(
aµ+1,1(u′′1 + u′′1) + · · ·+ aµ+1,µ(u′′µ + u′′µ)

)
...

aν,1(u′1 + u′1) + · · ·+ aν,µ(u′µ + u′µ) =

= Vν,1

(
aν,1(u′′1 + u′′1) + · · ·+ aν,µ(u′′µ + u′′µ)

)
(4.8)

where the ai,j are also real, and finally the fact that H ⊕H intersects Nν+1, . . . , Nn−k is translated into :



aν+1,1u
′
1 + bν+1,1u

′
1 + · · ·+ aν+1,µu′µ + bν+1,µu′µ =

= Vν+1(aν+1,1u
′′
1 + bν+1,1u

′′
1 + · · ·+ aν+1,µu′′µ + bν+1,νu′′µ)
...

an−k,1u
′
1 + bn−k,1u

′
1 + · · ·+ an−k,µu′µ + bnk,µu′µ =

= Vn−k(an−k,1u
′′
1 + bn−k,1u

′′
1 + · · ·+ an−k,µu′′µ + bn−k,νu′′µ)

(4.9)

In these equations, the ai,j and bi,j are complex numbers, and on each line at least one of the a ’s or one of
the b ’s should be non-zero.

We first consider the equations (4.9).

Proposition 4.2. – For every choice of u1, . . . , uµ−1 , non-zero, there is a non-zero uµ and scalars ai,j , bi,j

(at least one non-zero on each line) such that equations (4.9) are satisfied.

Proof of Proposition 4.2. – We observe that spanCI n{z, z} = spanCI n{Re z, Im z} , for any z ∈ CI n .

So if we set vj = Re uj , wj = Im uj ∈ RI n , equations (4.9) will be satisfied if we find complex scalars
a′i,j , b′i,j (at least one non-zero on each line), such that :



a′ν+1,1(v
′
1 − Vν+1v

′′
1 ) + b′ν+1,1(w

′
1 − Vν+1w

′′
1 ) + · · ·+

+a′ν+1,µ(v′µ − Vν+1v
′′
µ)+b′ν+1,µ(w′

µ − Vν+1w
′′
µ) = 0

...

a′n−k,1(v
′
1 − Vn−kv′′1 ) + b′n−k,1(w

′
1 − Vn−kw′′

1 ) + · · ·+
+a′n−k,µ(v′µ − Vn−kv′′µ)+b′n−k,µ(w′

µ − Vn−kw′′
µ) = 0

(4.10)

We now consider a function ϕ , defined on the unit ball of RI n , by :
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ϕ(w) = (
Re det(v′1 − Vν+1v

′′
1 , w′

1 − Vν+1w
′′
1 , . . . , v′µ−1 − Vν+1v

′′
µ−1,

w′
µ−1 − Vν+1w

′′
µ−1, v

′
µ − Vν+1v

′′
µ, w′ − Vνw′′),

Im det(v′1 − Vν+1v
′′
1 , w′

1 − Vν+1w
′′
1 , . . . , v′µ−1 − Vν+1v

′′
µ−1,

w′
µ−1 − Vν+1w

′′
µ−1, v

′
µ − Vν+1v

′′
µ, w′ − Vνw′′),

...

Re det(v′1 − Vn−kv′′1 , w′
1 − Vn−kw′′

1 , . . . , v′µ − Vn−kv′′µ, w − Vn−kw′′),

Im det(v′1 − Vn−kv′′1 , w′
1 − Vn−kw′′

1 , . . . , v′µ − Vn−kv′′µ, w − Vn−kw′′)
)

Each determinant is well-defined, since it consists of 2µ = p vectors, each in CI p . The function ϕ takes
its values in RI 2k−p , and 2k − p ≤ n − p < n , and it is odd. So Borsuk’s theorem applies, and gives a w ,
‖w‖ = 1, such that all determinants are 0. This proves Proposition 4.2 ; the real part of uµ , that is vµ ,
can be chosen arbitrarily.

We now turn to equations (4.8), which may not exist at all. We use the existing ones to compute some
of the u′j in terms of the u′′j , in a trivial manner :

u′1 = Vµ+1u
′′
1 , . . . , u′n−2k = Vνu′′n−2k (4.11)

If their number is unsufficient (n−2k < µ−1), we complete (4.11) in an arbitrary manner (as we did in § 3),
with arbitrary linear operators Sn−2k+1, . . . , Sµ−1 : CI n−p → CI p , so as to get (with a change of notation) :

u′1 = S1u
′′
1 , . . . , u′µ−1 = Sµ−1u

′′
µ−1 (4.12)

We now turn to (4.7). We eliminate uµ , substitute the u′j using (4.12), and get
a1,1(T1S1 − I)u′′1 + · · ·+ a1,µ−1(T1Sµ−1 − I)u′′µ−1 = 0

...

aµ,1(TµS1 − I)u′′1 + · · ·+ aµ,µ−1(TµSµ−1 − I)u′′µ−1 = 0

(4.13)

We set xj = u′′j ∈ CI n−p , Ui,j = TiSj − I , and obtain :
a1,1U1,1 x1 + · · ·+ a1,µ−1U1,µ−1 xµ−1 = 0

...

aµ,1Uµ,1 x1 + · · ·+ aµ,µ−1Uµ,µ−1 xµ−1 = 0

(4.14)

The Ui,j are fixed operators CI n−p → CI n−p , the xi ’s are at our disposal and should be non-zero, the ai,j ’s
are complex numbers at our disposal and one at least one each line should be non-zero.

We are now in a situation identical to the one of the previous paragraphs, with p replaced by µ .

If n is odd, n − p is also odd, and we follow the same substitution procedure as in the previous
paragraphs.

We let q = l.h ; in the last q equations we find xµ−q, . . . , xµ−1 in terms of x1 ,. . . , xµ−q−1 . Substituting
in the first l equations gives them a length of (h + 1)(µ− q − 1), and we request

(h + 1)(µ− q − 1) ≥ n− 2µ. (cond 3)
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The number of middle equations is µ − q − l , and the number of variables at our disposal is µ − q − 2, so
we request also

l ≥ 2. (cond 4)

After these substitutions have been performed, our first l equations are :
t1,1A1,1x1 + · · ·+ t1,n−pA1,n−px1 = 0

...

tl,1Al,1x1 + · · ·+ tl,n−pAl,n−px1 = 0

(4.15)

We consider
ϕ(x) =

(
Re det(A1,1x, . . . , A1,n−px),

Im det(A1,1x, . . . , A1,n−px),
...

Re det(Al,1x, . . . , Al,n−px),

Im det(Al,1x, . . . , Al,n−px)
)
,

which is an odd function since n − p is odd, of x ∈ CI n−p = RI 2n−2p , ‖x‖ = 1, taking its values in RI 2l ,
l < µ < p . There is an x1 such that ‖x1‖ = 1 and ϕ(x1) = 0, and this solves (4.15).

Now for the conditions (cond 3) and (cond 4) the same numerical computations as in § 2 show that they
are satisfied as soon as :

µ ≥
√

8n + 89− 9,

that is

p ≥ 2
√

8n + 89− 18.

If p was odd, then

p ≥ 2
√

8n + 89− 17.

Now, if n is even, we cannot decrease p by one unit, since we assumed it to be even. So we have to modify
slightly the substitution procedure, sparing one variable (say x1 ). This is done as follows.

We let q = l.h as before, and in the last q equations we find xµ−q, . . . , xµ−1 in terms of x2, . . . , xµ−q−1 .
Substituting in the first l equations gives them a length of 1 + (h + 1)(µ− q − 2), and we request

1 + (µ− q − 2)(h + 1) ≥ n− 2µ. (cond 5)

The number of middle equations is µ−q− l and the number of variables at our disposal is now only µ−q−3,
so we request also

l ≥ 3. (cond 6)

After these substitutions have been performed our first l equations are :
t1,1A1,1x1 + t1,2A1,2x2 + · · ·+ t1,n−pA1,n−px2 = 0

...

tl,1Al,1x1 + tl,2Al,2x2 + · · ·+ tl,n−pAl,n−px2 = 0

(4.16)
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We consider
ϕ(x) =

(
Re det(A1,1x, A1,2x2, . . . , A1,n−px2),

Im det(A1,1x, A1,2x2, . . . , A1,n−px2),
...

Re det(Al,1x,Al,2x2, . . . , Al,n−px2),

Im det(Al,1x,Al,2x2, . . . , Al,n−px2)
)
,

where x ∈ CI n−p = RI 2n−2p , ‖x‖ = 1, and ϕ is odd and takes its values in RI 2l , l < µ < p . For any fixed x2 ,
‖x2‖ = 1, there is, by Borsuk’s Theorem, an x1 such that ‖x1‖ = 1, and ϕ(x1) = 0, which solves (4.16).

Now, for the conditions (cond 5) and (cond 6), the same numerical computations as in § 2 show that
they are satisfied as soon as :

µ ≥
√

12n + 181− 13,

p ≥ 2
√

12n + 181− 26,

and if p was odd, since we decreased p by one unit at the beginning, we finally get the condition

p ≥ 2
√

12n + 181− 25,

under which the conclusion of Theorem 4.1 holds in all cases.
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