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Abstract 

A mechanistic model, which explains how toxic effects depend on the duration of exposure, 

has been developed. Derived from Debtox, it expresses the hazard rate as a function of the 10 

toxic concentration in the organism. Using linear approximations in accordance with the 

general simplifications made in Debtox, the LCx (concentration that induces x% of 

lethality), and in particular the LC50, are expressed explicitly as functions of time. Only 

three parameters are required: an asymptotic effect concentration, a time constant and an 

effect velocity. 15 

More sophisticated (but still analytic) models are possible, describing more complex 

toxicity patterns, such as an increase of sensitivity with time, or, conversely, an 

adaptation.  

These models can be fitted on the common and widespread LC50 endpoints available 

from the literature for various aquatic species and chemicals. The interpretation of the 20 

values assigned to the parameters will help explain the toxicity processes and to 

standardize toxicity values from different sources for comparisons. 

http://www.scmsa.com/
http://www.ineris.fr/
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Introduction 25 

Most ecotoxicological studies are based on laboratory assays, performed on a very small 

sample of the total environmental species, with short exposures, and in artificial 

conditions. Still, a predicted no-effect concentration (PNEC), which should protect all 

species, is needed for legal recommendations. Passing from laboratory data to real life 

situations requires several extrapolations which, at present, are scientifically uncertain. 30 

Our final aim is to better understand the variability of response of different aquatic 

species to a toxicant, in order to reduce the uncertainty when extrapolating a PNEC 

from laboratory experiments. The response of test organisms to toxicants depends not 

only on the concentration to which they are exposed, but also on the duration of that 

exposure. Moreover, risk assessment should be done for long term exposures. In fact, 35 

acute-to-chronic and interspecies extrapolations cannot be considered as independent. 

Various works have been proposed to model effects as a function of time and 

concentration, using regression, survival or kinetic approaches. Most of them were 

designed to use the raw survival data collected in bioassays: the comprehensive data set 

including the number of survivors associated with each concentration and each 40 

observation time ; some of them even require to modify the usual experimental designs. 

Such data is generally not published in the literature or stored in publicly available 

toxicity data banks. Consequently, these models cannot be used with most of the 

published data, and therefore for lots of species. Conversely if the LC50 data found in the 

literature are used directly, the variability due to the effect of exposure’s duration will 45 

interfere with the one due to interspecies sensitivities.  
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Hence our first step is to find a way to take time into account, still using LC50 data. To 

this aim, a mechanistic model based on the Debtox theory, modified to express LC50 as a 

function of time, is presented. The temporal evolution of the LC50 endpoints can be 

predicted and the parameters from this model, can be used to establish differences 50 

between species sensibilities to toxicants.  

Methods and derivation of an alternative approach 

Expressing LC50 as a function of time 

Lethality as a function of time and concentration can been seen as a time-concentration-

effect surface. The 50% effect section of this surface is the LC50 function of time of 55 

exposure. It is instructive to review previous works and to derive the expression of LC50 

as a function of time. 

Several regression models use an empirical hyperbolic relation first published by 

Ericksen Jones [1], Green [2] and Sprague [3]: LC50 values are expressed as a linear 

model of the inverse of time. This is also the case for the models of Mayer et al. [4] (two-60 

step linear regression approach) or Van Wijk and Kraaij [5] (extended log-logistic model). 

Carter and Hubert [6] used a multivariate regression and have shown, that in practice, 

an inverse time model is appropriate. 

Survival time models focus on a time-to-death point of view. They are derived from 

industrial reliability surveys and epidemiology. Works of Shirazi and Lowrie [7] or Sun 65 

et al. [8], in particular, are based on the use of the Weibull distribution, depending on 

time and on toxicant concentration. The LC50 is then expressed as a power of time: this 

is a generalization of the empirical relation found in the regression approaches. 

In order to take advantage of the theoretical knowledge from biology, several authors 

have proposed to use compartments models, which are routinely used in 70 
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pharmacokinetics (e.g. Jacquez [9]). In a simple, one-compartment model, the living 

organism is thought as a box (the compartment) through which a flow of the toxicant 

exist. The environmental concentration is often assumed as being constant. The solution 

of the differential equation of the first order uptake/clearance kinetic is the following: 

 )exp(1),( tk
k

k
CCtC out

out

in
org        (1) 75 

Corg and C are the concentrations of toxicant inside the organism and in the external 

environment respectively, t is the time, kin and kout are the first order uptake and 

elimination kinetic constants. These coefficients are assumed to depend neither on 

concentrations nor on time. The works of Kooijman [10] and Chew and Hamilton [11] 

lead to a similar expression of the LC50 as a function of time. They give an hyperbolic-80 

like shape. More recently, Kooijman and Bedaux [12] have proposed the so called Debtox 

model, which is also a kinetic based model (see below) in replacement of the “standard” 

one from Kooijman [10]. 

 

Considering the new variable : LC50time  85 

As just described, the evolution of toxicity with time is often graphically represented by 

the LC50 versus time plot which has an hyperbolic like shape. Plotting a new variable 

LC50t (t being the duration of exposure) versus time, highlights more complex patterns 

(see Figure 1). In particular, for short times, we can observe a parabolic decrease. For 

larger times, such a plot begins to increase and seems then to be asymptotically linear. 90 
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Figure 1: Example of experimental data and fit with our basic model for Toxaphene (CAS 8001352) on 

Salvenilus fontinalis (Salmonidae). Data are from Mayer et al. [13] ; Cs=  2.74 (s.d.= 0.14) 

µg/L, k= 0.210 (s.d.=0.014) day
-1

, kkill= 0.0813 (s.d.=0.0138) (µg/L)
-1

.day
-1

. 

Regression analysis of such transformed data obviously leads to a linear relation with 95 

time. These models are correct approximations for long exposures (under the critical 

assumption that the mode of action will not vary), but cannot explain the shape observed 

for short exposures. Kooijman [10] and Chew and Hamilton [11] also predicted a linear 
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asymptotic relation between effective LC50time and time, but failed to obtain 

satisfactory predictions for short times since they predict patterns that are always 100 

increasing. Debtox is the only model which is precisely able to predict temporal evolution 

of LC50 versus time. 

  

Expressing LC50 from Debtox 

Debtox is based on the DEB (Dynamic Energy Budget) theory developed by Kooijman 105 

[14] where the main biological functions: survival, growth or reproduction depend on 

their energy allocation. Debtox is adapted to the analysis of aquatic toxicity data, 

assuming that toxicants reduce the efficiency of energy utilization during the biological 

processes. It is an highly mechanistic way to describe the sensitivity of organisms, 

relying on simplified but realistic biological assumptions. As a mechanistic model, its 110 

parameters can be interpreted according to its biological assumptions. The user can 

draw several different hypotheses to customize the biological model to his needs. 

As in Chen and Selleck [15] kinetic model, Debtox assumes the existence of a threshold 

concentration below which no effect occurs. For the basic case of survival, when the 

internal concentration of the toxicant is above this threshold level, the hazard rate h is 115 

proportional to this concentration. h is defined as: 

dt
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where S is the survival and t the time. One obtains: 
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In these equations, the coefficient ktox is the proportionality coefficient linking hazard 120 

rate to the internal concentration. It reflects the toxicity of the compound with respect to 

survival. Csorg is the threshold internal concentration. Internal concentrations are 

derived from environmental concentrations using a one-compartment first order kinetic 

model. 

The hazard rate reflects the assumption that lethality at the individual level is 125 

stochastic. 

The survival function is expressed as a function of time and environmental concentration 

by: 
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It involves only three parameters: the elimination rate kout, the killing rate kkill and the 130 

assymptotic external threshold concentration Cs. Cs corresponds to the internal threshold 

concentration Csorg divided by the bioconcentration factor (BCF). The killing rate kkill 

depends on the proportionality factor ktox and on the bioconcentration factor. ts can be 

expressed from the other parameters and corresponds to the time –due to the kinetic 

process- necessary to reach the threshold concentration. 135 

Nevertheless, LC50 cannot be expressed analytically as a function of time from 

Equations 4. One can perform numerical computations, but they will not allow a full 

analysis of the function. In particular,  the significance of the parameters cannot be 

demonstrated.  
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  140 

Structure of our basic model 

The main idea of our approach is to simplify the kinetic equation, using a two step afine 

approximation of Equation 1. It is then possible to derive an analytical expression of 

LC50 versus time.  

- for short term exposures (below a time t=1/k) the internal concentration Corg is 145 

considered to be proportional to time and to the environmental concentration C, 

- after t=1/k, the equilibrium between Corg and the environmental concentration C 

is assumed to be reached. 

This is formalized as (see Figure 2): 
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Figure 2: Linear approximation (thick curve) for the one compartment first order kinetic model (thin 

curve). 



 9 

This linear approximation is by all means compatible with the general simplifications of 

Debtox, since the toxicant effect on hazard rate has already a two steps linear structure.  155 

The slope of Corg(t) is equal to k.BCF.C (from Equations 5) as long as the hypothesized 

equilibrium is not reached. The bigger k is, the earlier the effects will be observed. 

As for Debtox, the hazard rate is taken proportional to Corg as soon as a threshold 

concentration Cs is reached. From Equations 3, the hazard rate according to the 

environmental concentration becomes:  160 
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The parameters Cs and kkill are characteristic of the toxicity of the compound. The 

smaller Cs is, the more toxic the compound will be. The higher kkill is, the more the 

toxicity of the compound increases with its internal concentration. 

After integrating successively Equations 6, the resulting survival equations are:  165 
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With these new formulations, a LCx can be expressed explicitly as a function of time, 

since S(t, LCx)=1-x : 
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At t=1/k Equations 8 are equal. Near the point t=1/k, the first order Taylor 170 

approximations of these two equations are equivalent. This means that the solution, 

despite its conditional nature, is a continuous function. The LC50t transformation can 

be easily expressed for Equations 8. When t is lower than 1/k, LC50t can basically be 

expressed as a linear function of the inverse of time. It therefore corresponds to a first 

decreasing pattern. For the second equation, the LC50t expression becomes 175 

asymptotically a linear dependence upon time (see Figure 1). 

The transition time 1/k can then quickly be determined by an examination of the 

LC50time plot (see Figure 1). The higher k will be, the earlier the transition will occur. 

For many real data, the transition time 1/k is shorter than one day, meaning fast 

convergence to a constant internal concentration of the compound. This certainly 180 

explains why the methods we reviewed lead to good predictions, though they cannot 

explain the decrease on the LC50time plot. 

When time increases, the LC50t asymptotically tends to a linear function of time, which 

slope is Cs. The sharper this slope is, the less toxic the compound will be. Its intersection 
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with the y-axis is then -ln(1-x)/kkill, and it decreases if kkill increases. If the intersection is 185 

low the slope of toxicity versus time is high. 

According to these simple considerations, the LC50time pattern can be mechanistically 

interpreted in a quick and easy way without complex calculations. 

 

Estimation of the parameters 190 

The parameters have been estimated using the LC50time transformation on Equations 

8. Since many local minima are possible, the parameters space has been roughly 

explored with a Monte Carlo method. By observation of the residuals from random 

simulations for each parameters, one can constrain the initial range of parameters' 

values to approach a minimum, and continue the minimization with a traditional 195 

algorithm. Likelihood maximization is used, assuming a normal distribution of the 

errors. Our model is continuous but has two distinct derivatives due to its conditional 

nature. It is more convenient to use an algorithm which does not require the 

determination of a gradient of Hessian matrix. The downhill simplex method from 

Nelder and Mead (Nelder et Mead [16], Press et al. [17]), is robust and well adapted. 200 

Confidence on the parameters are derived from the deviance function. 

  

Results: illustrative application 

As an application, an example for Daphnia magna exposed to cadmium chloride will be 

presented. From complete survival data, we will first compare the application of our 205 

approach with the use of Debtox. We will in particular compare the parameters values 

obtained with the two methods in order to study how the two approaches differ. We will 
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also apply our method on LC50 for the same species and chemical, but from an another 

data source, to check whether the parameters values are still close. 

Some raw survival data are presented in Kooijman [10]. Young daphnids were used 210 

(<24h) and the bioassay was conducted in hard water, at 20°C, with a semistatic 

exposure to the toxicant. As illustrated in Figure 3, we fitted this data using Debtox. The 

no-effect concentration is determined at 14.1 (s.d.=0.69) µg/L, the elimination rate at 

0.425 (s.d.=0.050) day-1, the killing rate at 0.0282 (s.d.=0.004) (µg/L)-1.day-1. By default, a 

blank mortality rate is also determined at 0.00515 (s.d.=0.001) day-1. 215 
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Figure 3: Comparison of our approach with the Kooijman and Bedaux [12] model: explicative exemple 

on real data. Data from bioassay for cadmium chloride on Daphnia magna Kooijman [10] are 

used. Experimental survivals are plotted in function of concentration and time (dots). Using 

Debtox software, the surface illustrating the model of Kooijman and Bedaux [12] was fitted to 220 

these points. LC50 values were calculated, when possible, at different times using the log-logit 

transformation : the fits are showed on the figure (thin sigmoid curves for 8 different times). 

We fitted our basic model to these thus determined LC50 values (dark thick curve). 
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Using our model, we calculate LC50 at several times using the log-logit transformation. 

When 50% lethality is not bracketed by experimental points, extrapolation with the logit 225 

model is unsafe. This implies that LC50 values was not determined for short times. Note 

that our model is fitted using 8 values, when Debtox uses 70 values. We find Cs=8.83 

(s.d.=0.96) µg/L, k=0.556 day-1 and kkill=8.29.10-3 (s.d.=1.88.10-3) (µg/L)-1.day-1 (see Figure 

4a). These values are quite similar with the ones given by the Debtox estimate. Note that 

standard deviation on k can not be calculated since this parameter is poorly estimated 230 

when transition 1/k is not present on data. We also compared the previous results with 

those obtained from an another data source for cadmium chloride on Daphnia magna. 

We use LC50 data determined by Suedel et al. [18]. Adults (2-3 weeks) were used and 

the assay was conducted in pond water (hardness: 69-87 mg/L CaCO3 , temperature: 

19.6-24 C°) with a static exposure to the toxicant. The experimental conditions are not 235 

strictly equivalent with those of Kooijman [10]. We found Cs=7.63 (s.d.=0.06) µg/L, 

k=0.459 (s.d.=0.012) day-1 and kkill= 6.09.10-2 (s.d.=0.30.10-2) (µg/L)-1.day-1 (see Figure 4b). 

These values are quite similar to the previously determined ones. The same authors 

determined a NOEC (with mortality as observed effect) at 5 µg/L after two weeks of 

exposure, which is quite close to the determined threshold concentrations. 240 
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Figure 4: (a) Detail of the fit obtained with our basic model on LC50 values determined from Kooijman 

[10] for Daphnia magna exposed to cadmium chloride (see previous figure). (b) Fit obtained 

with our basic model on data from Suedel et al. [18]. 

 245 

Discussion and extensions 

Giesy and Graney [19] noticed that different shapes of toxicity curves could be observed 

which differ from the rectangular hyperbola. Moreover, observing the effective 

LC50time plot for some data reveals patterns that cannot be explained with our basic 

model. 250 

For instance, for large times, the LC50time plot can lose its linear shape and 

progressively decrease (see Figure 5). This corresponds to a toxicity curve that seems to 
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tend asymptotically to zero. This decrease can be interpreted as an increasing sensibility 

with time. 

 255 

Figure 5: Example of experimental data and fit with the decreasing Cs modelfor copper (CAS 7440508) 

on Procambarus clarkii (Decapoda) ; data are from Rice and Harrison [20] ; Cs= 998 

(s.d.=118)  µg/L, k=0.608 (s.d.=0.186) day
-1

, kkill=  5.62.10
-5

 (s.d.=0.78.10-5). (µg/L)
-1

.day
-1

, 

tc=57.7 (s.d.=3.1) (µg/L).day
-1

.  

 260 

Modifying the mechanistic structure of the model 

In a first approach, one may think that this is due to natural mortality. Our basic model 

can be modified to take this into account. But computing the parameters leads to values 

that are not relevant from a biological point of view. Indeed, it predicts a natural 

mortality that is clearly excessive, in particular in the case of acute tests. So, natural 265 

mortality is not sufficient to explain the second decrease on the LC50time plot. 

We suggest to interpret this phenomenon as a increasing sensibility, due to a decrease of 

the threshold concentration Cs with time. It can be seen as a toxic induced aging.  

Practically, we considered Cs as a decreasing linear function of time. Since Cs cannot 

become negative we have to define a critical time tc beyond which Cs is null. This is 270 

formalized as: 
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 Cs0 is the initial value of the threshold concentration. l is the slope for the decrease. 

These two parameters replace the Cs of our basic model. The time tc is expressed as Cs0/l. 

Using this new expression of the threshold concentration, the hazard rate and survival 275 

function can be expressed using the same hypothesis as previously (equations are given 

in annex).  Equations are still linear, but several cases have to be examined, due to the 

respective values of ts, tc and 1/k: whether tstc1/k, ts1/ktc or 1/ktstc. Obviously, as in 

the basic model, the hazard rates have several steps afine expressions. Following the 

same mathematical developments, we finally obtain eight conditional equations for the 280 

expression of LCx as a function of time: they are given in the annex. They require 

conditional switches, which can be easily implemented on a computer. 

The LC50time plot decreases for large times, but this can be preceded by an increase 

(parabolic like shape) (Figure 5), or be always decreasing. These shapes obviously 

depend on the decrease of Cs (slope of the decrease), but also on the others parameters 285 

(see Annex). 

An important corollary is that the threshold concentration does not exist anymore for 

long exposures. This means that chronic exposure to toxicants lead to an irremediable 

lethality. It would certainly be instructive to identify such compounds. The concerned 

toxicants are generally considered to be cumulative poisons (Giesy and Graney [19]) or 290 

compounds that can be accumulated in buffering tissues with delayed release towards 

more sensitive biological targets. 

Anyway, without any mechanistic interpretation or hypothesis, the observation of a 

decreasing LC50time plot should be a sufficient indication to induce cautious analysis. 
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In such a case, extrapolations based on empirical regression methods, for instance, 295 

would then certainly not be relevant since they imply a linear evolution of the 

LC50time plot. They will then underestimate the toxicity of the compound. 

One can study the adverse hypothesis of an increasing threshold concentration upon 

time, in a quite similar fashion. This suggests a rising tolerance to the compound which 

is realistic if an adaptation to the toxicant exists, but also if the compound is bio-300 

metabolised to a less toxic chemical.  

An adaptation needs to be interpreted at a macroscopic scale: we cannot distinguish 

between resistances coming from biological processes, resistances due to a selection that 

would maintain the less sensitive individuals or degradation of the compound. From a 

modeling point of view, assuming Cs is increasing, leads to a first increasing then 305 

decreasing hazard rate as a function of time. A biological adaptation can easily be 

interpreted by an increasing threshold (biochemical detoxifications, behavior 

modification,…) A selection can be understood as a decreasing probability of death with 

time, i.e. a decreasing hazard rate. A hazard rate, first increasing then decreasing, can 

also be obtained when the external concentration is diminishing, for instance with non-310 

persistent chemicals (Widianarko and Van Straalen [21]). 

The predicted toxicity curves and LC50time patterns have similar shapes to the ones 

given by our basic model, but the predicted asymptotic values are higher: this model fits 

data for which our basic model predicts a Cs smaller than the asymptote of data (Figure 

6). 315 
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Figure 6: Summary plot for the different models shown on the LC50time plot. 

 

Interpreting the parameters 

This approach is based on mechanistic models. They are obviously simplifications of 320 

complex biological mechanisms. We did not try to describe precise toxicological processes, 

but to make a macroscopic characterization of species sensitivity. Parameters have to be 

analyzed in view of the biological assumptions of the models. The kinetic constant k 

should be interpreted on the basis of the first order kinetic one compartment model. A 

threshold concentration Cs is assumed. Cs is supposed to be homogeneous for all the 325 

individuals of the tested population. This assumption imply that Cs correspond to a 

toxicant threshold concentration below which no effect is supposed to occur. Since 

bioassays are performed on quite standardized organisms, variations on the biological 

parameters could be considered as minimal. Unexplained variability, is modeled as 

stochasticity on individuals lethality, by the use of the hazard rate. Toxicant 330 
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concentration is related to the hazard rate by the parameter kkill. kkill is highly correlated 

with Cs as they both depend on the bioconcentration factor. 

 

A pragmatic approach, to use LC50 data 

The current procedures in bioassays consist in observing lethality at fixed times (which 335 

can lead to the determination of LC50 endpoints), rather than survival curves (Sprague 

[3]). There is then a statistical dependence of LC50 data at consecutive times, since they 

concern the same organisms. Continuing the work of Mayer et al. [4], Lee and al. [22] 

proposed multifactor probits models. Such models, which require a specific design, are 

quite heavy: at least five different concentrations with intermediate lethality –i.e. 340 

between 10% and 90%-  at least observed at four duration times for each concentration. 

Survivals models consider raw experimental data as time to death versus concentration. 

They can remove this dependency difficulty and have an intrinsically greater statistical 

power. But any biological interpretation is limited. Chew and Hamilton [11] used the 

first order kinetic model with times to death to predict the time required to cause 50% 345 

lethality. This approach is statistically more adapted to these kind of data but requires 

heavy experiments as continuous observations of deaths are needed. 

Our method will be immediately useful when the only available data are the LC50: this 

is commonly the case in ecotoxicity databases. 

 350 

Conclusions 

Due to its mechanistic nature and its analytical formalization, our model provides an 

easy way to study the species sensitivities to toxicants using published LC50 data taking 

time into account.  

Parameters values can be interpreted in accordance with the biological assumptions 355 

inherited from Debtox. A threshold toxicant concentration below which no effect is 

supposed to occur is assumed. The hazard rate is proportional to the internal toxicant 

concentration above this threshold. The internal toxicant  concentration is derived using 

a linear approximation of a one compartment first order kinetic model. An analytical 

expression of the LC50 as a function of time is thus possible. 360 

 

It was shown that parameters can be roughly but quickly determined through the 

LC50time transformation.  
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The LC50time versus time plot also reveals different evolutions in the sensitivity of 

species with time. These can be interpreted at a macroscopic scale using various 365 

hypotheses as decreasing or increasing threshold concentrations. 

Each species sensitivity is associated with the 3 or 4 parameters values of the models. 

The next step is to analyze these parameters values in order to find out what 

characterizes the species sensitivity to toxicants and whether they can be related to the 

toxicants’ properties, or species’ biological attributes (for instance taxonomy). 370 
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Annex 

Equations for the decreasing Cs model 

The analytical solution is a conditional function. It is expressed by the eight following 

equations. 375 
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If ts  1/k  t tc : 
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