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I. General construction of the histogram 

 

Any probabilistic study usually starts with the construction of an histogram: one defines some 

classes and counts how many points fall into each class. The most common situation is as 

follows : we have a sample of real values  ix , 1,...,i Itot  ; let min im x  and max iM x . We 

want to build an histogram with  K  classes, from this sample.  

 

What people do in general is to divide the interval  ,m M   into K  classes, of width 
M m

K


. 

 

But this approach has several drawbacks, and people are not often conscious of them: 

 

 The boundaries of the classes are strongly dependent of the values of m  and ,M  and 

would be modified if these values were changed, for instance if the sample grew bigger; 

 

 These boundaries do not take into account the uncertainties which certainly exist upon the 

values of  m  and M ; 

 

 All classes are of the form a x b  , except the last one, which is of the form a x b  , 

since the value M  is necessarily met. 

 

An histogram should be viewed as a measurement device, just like a thermometer. It gives an 

information, with some accurracy. Therefore, the measurement device should be as 

independent as possible from the sample. Of course, it cannot be totally independent. 
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The number of classes itself, namely K , is not arbitrary but should reflect the performances of 

the measurement device. Indeed, it is linked with the precision we expect. When we build an 

histogram, two points in the same class are considered as the same point. When we make a 

measurement, we consider that, if the value x  is read, it might as well be anything between 

x   and x  ,  being considered as the precision of the measurement device. So we have 

some rough link between both concepts : 

 

2 ,
M m

K



                                                               (1) 

 

since 
M m

K


 is the width of each class, from the histogram point of view, and 2  is the width 

of each class, from the precision point of view. 

 

In order to answer the difficulties mentioned above, we will build classes such that the first 

one is centered at m  and the last one centered at .M  

 

Therefore, the centers of the classes will be: 

 

 
1

k

k
c m M m

K
  


 , 0,..., 1k K                                          (2) 

 

The half-width of a class is: 

 

 2 1

M m
l

K





                                                                (3) 

 

A point x  belongs to the class ,kC   with center kc , if: 

 

 
 

 
 1 2 1 1 2 1

k M m k M m
m M m x m M m

K K K K

 
       

   
              (4) 

 

So, all our classes will be here of the form a x b  . 

 

Condition (4) may be written: 

 

 
1 1

2

K
k x m

M m


  


                                                 (4a) 

 

and: 

 

 
1 1

2

K
x m k

M m


  


                                                (4b) 

 

which means that k  is defined by: 
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 
1 1

2

K
k x m

M m

 
    

,                                                (5) 

 

where  x  is the integer part of x ,  that is the largest integer smaller than .x  

So, a VBA code may be written as follows; Itot  is the total number of lines is the table, 

min_values  and max_values  are respectively the min and the max, and Ktot  is the number K  

above: 

 

for i = 1 to Itot  

k= int( (x(i)-min_values)*(Ktot-1)/(max_values-min_values) +1/2)  

histo(k)=histo(k)+1 

next i 

 

As it stands now, the method has a drawback: the extremities of each class are rational 

numbers, usually with many decimal digits, which looks unnatural, with respect to the 

requirement for a given precision. For instance, a class might appear as  443.556-464.444. Its 

width is almost 1, which means that we do not want to distinguish between numbers with a 

difference say of 0.5. But still, we give 3 digits after the decimal point, which looks absurd. So, 

we have to study how to round up the values. 

 

II. Rounding up the values 

 

If we accept the idea that all values in our sample are subject to some measurement error, the 

simplest way of taking it into account is to round up each value. Let   be the precision we 

accept, and let 10    for some integer 0.   Then each value ix  is replaced by 

 

( , )i irx round x   

 

which is the number with   decimal places closest to ix . 

 

Then of course m  and M  will also be rounded to   decimal places. But even so, the centers of 

the other classes will not be rounded to the same number of decimal places, because they are 

multiples of 
1

M m

K




. 

 

It is important to keep the fact that all classes should have the same width: for instance, when 

we generate random numbers, the percentage of points in each class depends on the width of 

the class.  

 

So, what we do is as follows: we do not try to replace all centers by approximate values; we 

keep the rational value. But still, in the Excel cells, we may present the result with a given 

number of digits. We will write for instance : 
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For k = 0 To Ktot 

Sheets(3).Cells(k + 2, 1) = Round(min_values + k / (Ktot - 1) * (max_values - min_values) - 

(max_values - min_values) / (2 * (Ktot - 1)), 2) & "-" & Round(min_values + k / (Ktot - 1) * 

(max_values - min_values) + (max_values - min_values) / (2 * (Ktot - 1)), 2) 

Sheets(3).Cells(k + 2, 2) = histo(k) 

Next k 

 

This way, we will have an histogram of the following sort: 

 

interval 
number of 

occurrences 

0-0,01 43 

0,01-0,02 90 

0,02-0,03 115 

0,03-0,04 98 

 

The endpoints look simple, but still the classes have the same width. If this example, the value 

of l  was 0,00504934908163668, the value of the min was 0.000189483165740967, the value of 

the max 0.999960601329803. 

 

III. Avantages of the method 

 

This method answers the difficulties mentioned previously: 

 

– If the sample grows bigger, the classes are not necessarily modified, as long as no value 

becomes smaller than m l  or larger than .M l  Of course, if more points appear below 

m  or above M , the values ,m M will not be centers of classes anymore, but the definition 

of the classes will not be modified. 

 

– The construction incorporates the uncertainties upon the values. 

 

– All classes have the same form, namely a x b  . 

 

– The method may be fully automatized. All we need is , , .m M K  

 

An interesting application, which we recently met, is that this method allows us to show that 

some variables have identical laws. Assume for instance that we have one random variable X  

and another one Y which turns to be 100Y X . If we build the histograms the usual way, by 

hand, we might not notice this. Assume for instance that the minimum value for X  is 0.04 

and we want 100K   classes. We would take for first interval for X  the interval 0 – 0.1.  

 

For ,Y the smallest value is 4, and we would probably take as first interval  0 – 5. We would 

not see that this is the same variable, up to a multiplication by a constant factor 100.  

 



5 
BB Histogram Normalization, december 2012 

If the classes are defined in an automatic manner, as was previously explained, the link 

between X  and Y  is obvious. All endpoints are multiplied by 100, and the number of points 

in each class is the same. 

 

IV. Loss of information 

 

Quite clearly, when we perform an histogram, some information is lost: all points belonging to 

the same class are identified together, and identified to the center of the class. Simply consider 

the extreme values m  and M : it is therefore better to have them as centers of classes, and no 

information will be lost upon them. So the indicator "total loss of information when performing 

the histogram" is one more reason for the choice we indicate. 

 

V. Refining the definition of the grid 

 

In the work above, we decided that the extreme classes would be centered at the extreme 

values of the sample. We may wonder if there are better choices. We now investigate this 

question. 

 

The set of classes will be called a "grid". As before, there are K  classes, denoted by ,KC  and 

the number K  is fixed. The width of the classes is denoted by 2l  ; it is the same for all 

classes, and it is fixed, since it results from the precision which is required. We denote by 
kc , 

1,...,k K , the center of the class .kC  Our question now is how to choose the position of the 

center  1c , since all other centers will follow. 

 

If some points 
ix  fall into the class kC , they are identified to its center 

kc  ; so there is a loss of 

information equal to i kx c  for each of them. We are looking for the position of the grid, that 

is the position of  1c , which will minimize this loss of information. 

 

As before, we set  min im x  et  max iM x  ; we admit the fact that the grid is larger 

enough to cover all the sample, with half a class on each side. This gives the inequality: 

 

 2 1K l M m                                                      (1) 

 

It is useless to have empty classes; either before ,m  or after .M  So the first class will contain 

m  and the last one will contain M , and we get the conditions: 

 

1m c l    

 

KM c l    

 

Since  1 2 2Kc c K l   , this is compatible with condition (1), since: 

 

 1 1 2 2 2 2K KM m M c c c c m l K l Kl             
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The total number of classes, taking (1) into account, is: 

 

int 1
2

M m
K

l

 
  

 
                                                           (2) 

 

For instance, if  0,m   1M   and 1/ 20l    (classes of width 1/10), we find 11.K    

 

So, the difference with the paragraphs above is that now 
1c  may not be exactly in m . More 

precisely, we want to position  
1c , under the constraint: 

 

 
1m l c m l                                                                  (3) 

 

and we want to minimize the quantity: 

 

k

k i

k i C

Q c x


                                                                (4) 

 

In the definition of this quantity, we consider that the total loss of information is simply the 

sum of all individual losses of information; we do not see any reason to take, for instance, a 

quadratic sum. 

 

Since  1 2 1kc c k l   , 1,...,k K , the quantity Q   may be written: 

 

 1 2 1
k

i

k i C

Q c k l x


                                                      (5) 

 

If we move 1c , but still keeping each 
ix  in the same class, then obviously Q  is a linear 

function of 1c : the absolute value becomes a quantity  1a c  or 1c a  and their sum is linear. 

 

The function  1Q c  is continuous and piecewise linear. The discontinuities of the derivative 

appear for the values of  1c   such that, for some i   and some k : 

 

 1 2 1 ic k l x l     

 

that is: 

 

 1 2 1 ic k l x l      

 

So, these are points  1c  of the form: 

 

 1 2 3ic x k l    

 

or of the form: 

 

 1 2 1ic x k l  
 
                                                        (6) 

 

for 1,...,i N  and 1,...,k K . Both forms are equivalent, if we replace k  by 1k  . 
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So we have NK  points of discontinuity for the derivative, and all we have to do is to compute 

the values of the function at these points. The minimum value of Q  may be reached only at 

such points, since the function is linear in between. 

 

A given point 
ix   belongs to the class  1k k c   defined by: 

 

1 1
int

2 2

ix c
k

l

 
  

 
                                                               (7) 

 

So our program goes as follows. Here, we generated a random sample x(i) between 0 and 1, of 

size Itot=10 000. We take lc = 1 / 20 (half width of a class). We have Ktot = 11. Let c(k) be the 

centers of the classes. 

 

Dim c1 As Double 'position of the first center | Dim c0 As Double | Dim dist As Double 

Dim d_min As Double 'shortest distance | d_min = 10000 'initialization with high value 

Dim i1 As Integer | Dim k1 As Integer 

For i1 = 1 To Itot 

For k1 = 1 To Ktot 

c1 = x(i1) - (2 * k1 - 1) * lc 'enumeration of all possible first centers 

If c1 > -lc And c1 < lc Then 

For k = 1 To Ktot 

c(k) = c1 + 2 * (k - 1) * lc 'enumeration of all centers, the first one being given 

Next k 

 

For i = 1 To Itot 

kk = Int((x(i) - c1 + lc) / (2 * lc)) + 1 'the index of the center closest to x(i) 

dist = dist + Abs(c(kk) - x(i)) 

Next i 

If dist < d_min Then 

d_min = dist 

c0 = c1 

End If 'If dist < d_min Then 

End If 'If c1 > -1 / 20 And c1 < 1 / 20 Then 

dist = 0 

Next k1 

Next i1 

 

The result is the value of 1c  . In the present case, we find 1 0.026c  , which means that the 

value 1 0c   was not best : a slight shift of the grid to the right minimizes the loss of 

information. 

 

The values of 1c  to be searched are of the form , 3 , 5 ,...i i ix l x l x l    so, quite obviously, for a 

given ix , only one of them may be in the interval  ,m l m l  . 


