
Siège social et bureaux : 111, Faubourg Saint Honoré, 75008 Paris. Tel : 01 42 89 10 89. Fax : 01 42 89 10 69. www.scmsa.com 
Société Anonyme au capital de 56 200 Euros. RCS : Paris B 399 991 041. SIRET : 399 991 041 00035. APE : 7219Z 

 

 

 

 

 

 

 

 

 

The use of the EPH in order 

 

to extend a truncated probability law 
 

 

 

Bernard Beauzamy 

Société de Calcul Mathématique SA 

 

 

 

 

 

July 2009 

 

 

 

 

I. Truncated probability law 

 

It happens quite often in practice that a probability law is "truncated", meaning that the high 

values (or the low ones) are not correctly recorded. Here are some examples : 

 

− The age of a population is recorded, in 10 years-width intervals, but the upper interval is 

simply 100 ; 

 

− The speed of the wind is recorded, in 10 km/h intervals, but the upper interval is simply 

150 km/h ; 

 

− A temperature is recorded, but the thermometer stops working at 50°C : everything above 

50 is recorded as 50, or not recorded at all. 

 

In practice, such situations are not exceptional at all. Of course, if nothing was recorded, we 

cannot know that something happened, but if, for instance, the instrument was broken (as it 

can be the case of an anemometer in strong wind), then some information remains. 
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II. Mathematical description of the problem 

 

For us, the mathematical description is as follows :  

 

We have an histogram with intervals 
0 0 01 2 1 1[ , [,...,[ , [,...,[ , [, [ , [k k k k kx x x x x x x    : the last 

interval is different from the others, and is of the type 
0kx x . All previous intervals have 

same width. We have the probabilities 
01,..., ,...,k kp p p of all these intervals. We want to 

complete the probability law above 
0kx : we want to introduce intervals 

0 0 0 01 1 2[ , [, [ , [,...k k k kx x x x    

and estimate their probabilities. In other words, we want to "distribute" the infinite interval 

0
[ , [kx   in a reunion of finite intervals of same width and estimate their probabilities.  

 

There is no way of doing this, from usual tools in probability theory. The usual "tricks" would 

be : 

 

− To fit some specific law using the existing data (for instance normal law, or exponential, or 

Weybull, or Gumbel, and so on), and use this law for the extension. The problem is that, in 

usual situations, the data do not fit with any academic law. 

 

− To extend the most right data, using for instance a linear regression. This is, in some 

sense, a special case of the above, using only some of the data. The drawbacks are : there is 

no reason to admit a linear model, and this linear model will depend on the data which are 

selected ; if you keep only the last 20 data, or last 40 data, and so on, you will not have the 

same model. 

 

 

 The Experimental Probabilistic Hypersurface (EPH) will allow a construction with no such 

fictitious assumptions. We refer to [EPH1] for the construction of the EPH and its main 

properties. 

 

Since the intervals 
0 01 2 1[ , [,...,[ , [k kx x x x  are all of same width (let us call it w ), the points 

0 01 2, ,...k kx x   are known. The only question is : what probability should we put on each of these 

new intervals ? 

 

The EPH is a way of sending a probabilistic information to new places, that is to places where 

nothing is known. Here, the context is simple ; we have the information "for the interval 

1 2[ , [x x  the probability is 1p ", up to "for the interval 
0 01[ , [k kx x  the probability is 

0 1kp  ", and we 

want to know what probability to put above 
0 0 0 01 1 2[ , [, [ , [,...k k k kx x x x    

 

Let us call kc  the center of the interval 1[ , [k k kI x x  , 1k  . The problem may be viewed as 

follows : we have a measurement (namely kp ) above each point kc , 0k k , and we wish to 

estimate the value of the kp , 0k k . 

 

Let us fix some terminology. Let us denote by 
0

0

kp the initial probability of the half-infinite 

interval 
0

[ , [kx   and let kp , 0k k , the probabilities of the intervals we want to introduce 

instead. Then the original probability 
0

0

kp  should be redistributed among these new intervals, 

which means : 
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Typically, we have the following disposition : 

 

 
 

where the 11th interval stands for "all above 11x " (the data are given below). 

 

We observe that we cannot apply directly the EPH to the couples  ,k kc p , 0k k , since (as the 

above example shows) the prediction would generally be something above 
0 1kp   (the last 

known one). Indeed, at the end, the kp 's are often decreasing (perhaps with "bumps") and the 

EPH takes the whole sequence into account. This is not at all what we want : the next kp 's 

should be more or less smaller than the existing ones. 

 

So we proceed as follows. We introduce the consecutive differences : 

 

1 1q p , 1k k kq p p    for 02 k k                                        (2) 

 

and we will work on these differences : we will apply the EPH to them.  

 

III. First step of the construction 

 

We apply the EPH to the sequence  
0

,k k k k
c q


. From it, we deduce a probability law for the 

parameter 
0kq  above the point 

0kc ; let 
0
( )kf t  be its density. Then, since 

0 0 0 1k k kp q p   , and 

since 
0 1kp   is known, the probability law of 

0kp  is known and its density is 
0 0
( )k kf t p . But 

some precautions have to be taken : 

 

− First, the probability law on 
0kp  has to be between 0 and 1, because 

0kp  is itself a 

probability. This does not follow automatically from the construction.  

 

− Second, the probability law on 
0kp  should not exceed the known value 

0

0

kp . 

 

Both precautions may be combined into 1 : we take the probability law 
0 0
( )k kf t p , truncate it 

at 0 (lower) and 
0

0

kp  (upper) and renormalize, so that the integral will be 1. Let 
0
( )k t  be the 

density of probability we obtain this way for 
0kp . 
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Then the value we assign to 
0kp is the expectation of this probability law : 

 
0

0

0 0

0

( )

kp

k kp t t dt                                                          (3) 

 

By construction, we have : 

 

0 0

00 k kp p                                                                   (4) 

 

 So we have affected a "portion" of the original probability 
0

0

kp  to the point 
0kc , and we still 

have the rest, namely 
0 0

0

k kp p , to affect to further intervals.  

 

So, at the end of the first step, we have affected a probability 
0kp to the point 

0kc and we have a 

quantity 
0 0 0

0 0

1k k kp p p    for further intervals. We continue inductively. 

 

IV. General step 

 

Assume we know, or have constructed, probabilities 1,..., kp p  above the points 1,..., kc c  and we 

are left with a probability 
0

1kp   to redistribute for further intervals. We have by construction : 

0

1 1 1k kp p p      

 

We form the consecutive differences : 

 

1j j jq p p   , j k  

 

Using the information  ,j jc q , j k , from the EPH we construct a probability law for 1kq   

above 1kc  . From this probability law on 1kq  , we deduce (by translation) a probability law on 

1kp  ; we truncate it at 0 and at 
0

1kp  , and renormalize. Let 1k   be this probability law. We 

choose as 1kp   the expectation : 

 
0

1

1 1

0

( )
kp

k kp t t dt


    

 

and define the rest (to be reassigned to further intervals) as : 

 
0 0

2 1 1k k kp p p     

 

Of course, we have : 

 
0

1 1 2 1k k kp p p p       
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V. An example 

 

We start with the data given in the illustration above : 

 

point proba 

1 0,062 

2 0,069 

3 0,070 

4 0,081 

5 0,112 

6 0,100 

7 0,087 

8 0,094 

9 0,069 

10 0,069 

>10 0,187 

 

The repeated application of the EPH gives the following probabilities : 

 

point proba point proba point proba 

1 0,062 1 0,062 1 0,062 

2 0,069 2 0,069 2 0,069 

3 0,070 3 0,070 3 0,070 

4 0,081 4 0,081 4 0,081 

5 0,112 5 0,112 5 0,112 

6 0,100 6 0,100 6 0,100 

7 0,087 7 0,087 7 0,087 

8 0,094 8 0,094 8 0,094 

9 0,069 9 0,069 9 0,069 

10 0,069 10 0,069 10 0,069 

11 0,067 11 0,067 11 0,067 

12 0,120 12 0,066 12 0,066 

  13 0,054 13 0,046 

    14 0,008 

 

 

This leads to the following histograms : 
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